

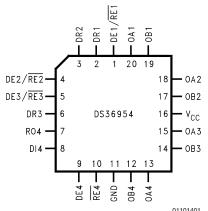
DS36954

Quad Differential Bus Transceiver

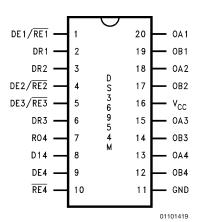
General Description

The DS36954 is a low power, quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, I/O bus applications. A compact 20-pin surface mount PLCC or SOIC package provides high transceiver integration and a very small PC board footprint.

Propagation delay skew between devices is specified to aid in parallel interface designs—limits on maximum and minimum delay times are guaranteed.

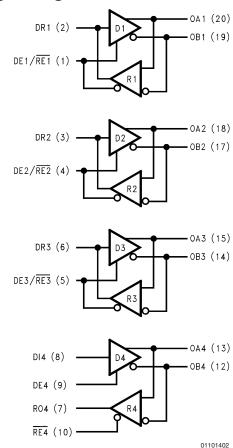

Five devices can implement a complete SCSI initiator or target interface. Three transceivers in a package are pinned

out for data bus connections. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.


Features

- Pinout for SCSI interface
- Compact 20-pin PLCC or SOIC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source/sink currents
- Thermal shutdown protection
- Glitch-free driver outputs on power up and down

Connection Diagrams



Order Number DS36954V
See NS Package Number V20A

Order Number DS36954M See NS Package Number M20B

Logic Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{lll} \text{Supply Voltage} & & 7\text{V} \\ \text{Control Input Voltage} & & \text{V}_{\text{CC}} + 0.5\text{V} \\ \text{Driver Input Voltage} & & \text{V}_{\text{CC}} + 0.5\text{V} \\ \end{array}$

Driver Output Voltage/

Receiver Input Voltage -10V to +15V Receiver Output Voltage 5.5V

Continuous Power Dissipation @ +25°C

V Package 1.73W M Package 1.73W Derate V Package 13.9 mW/°C above

+25°C

Derate M Package 13.7 mW/°C above +25°C

Storage Temperature Range -65°C to +150°C

Lead Temperature
(Soldering 4 Sec.)

260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Free Air			
Temperature (T _A)	0	+70	°C

Electrical Characteristics (Note 2)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DRIVER (CHARACTERISTICS		·			
V_{ODL}	Differential Driver Output	$I_L = 60 \text{ mA}$	1.5	1.9		V
	Voltage (Full Load)	$V_{CM} = 0V$				
V_{OD}	Differential Driver Output	$R_{L} = 100\Omega \text{ (EIA-422)}$	2.0	2.25		V
	Voltage (Termination Load)	$R_{L} = 54\Omega \text{ (EIA-485)}$	1.5	2.0		V
ΔIVODI	Change in Magnitude of Driver	$R_L = 54 \text{ or } 100\Omega$				
	Differential Output Voltage for	(Note 4) (Figure 1)			0.2	V
	Complementary Output States	(EIA-422/485)				
V _{oc}	Driver Common Mode	$R_L = 54\Omega$ (Figure 1) (EIA-485)			3.0	V
	Output Voltage (Note 5)					
ΔIVOCI	Change in Magnitude of	(Note 4) (Figure 1)			0.2	V
	Common Mode Output Voltage	(EIA-422/485)				
V_{OH}	Output Voltage High	I _{OH} = -55 mA	2.7	3.2		V
V_{OL}	Output Voltage Low	I _{OL} = 55 mA		1.4	1.7	V
V_{IH}	Input Voltage High		2.0			V
V _{IL}	Input Voltage Low				0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA			-1.5	V
I _{IH}	Input High Current	V _{IN} = 2.4V (Note 3)			20	μΑ
I _{IL}	Input Low Current	V _{IN} = 0.4V (Note 3)			-20	μΑ
I _{osc}	Driver Short-Circuit	$V_{O} = -7V \text{ (EIA-485)}$		-130	-250	mA
	Output Current	V _O = 0V (EIA-422)		-90	-150	mA
	(Note 9)	$V_O = +12V \text{ (EIA-485)}$		130	250	mA
RECEIVE	R CHARACTERISTICS					
I _{OSR}	Short Circuit Output Current	V _O = 0V (Note 9)	-15	-28	-75	mA
l _{oz}	TRI-STATE® Output Current	$V_O = 0.4V$ to 2.4V			20	μΑ
V _{OH}	Output Voltage High	$V_{ID} = 0.2V, I_{OH} = 0.4 \text{ mA}$	2.4	3.0		V
V _{OL}	Output Voltage Low	$V_{ID} = -0.2V, I_{OL} = 4 \text{ mA}$		0.35	0.5	V
V _{TH}	Differential Input High	$V_O = V_{OH}$, $I_O = -0.4$ mA		0.03	0.2	V
	Threshold Voltage	(EIA-422/485)				
V _{TL}	Differential Input Low	$V_O = V_{OL}$, $I_O = 4.0$ mA	-0.20	-0.03		V
	Threshold Voltage (Note 6)	(EIA-422/485)				
V _{HST}	Hysteresis (Note 7)	V _{CM} = 0V	35	60		mV

Electrical Characteristics (Note 2) (Continued)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DRIVER	AND RECEIVER CHARACTERIS	TICS		•			
V _{IH}	Enable Input Voltage High			2.0			V
V _{IL}	Enable Input Voltage Low					0.8	V
V _{CL}	Enable Input Clamp Voltage	I _{CL} = -18 mA				-1.5	V
I _{IN}	Line Input Current	Other Input = 0V	V _I = +12V		0.5	1.0	mA
	(Note 8)	DE/RE = 0.8V DE4 = 0.8V	$V_1 = -7V$		-0.45	-0.8	mA
I _{ING}	Line Input Current (Note 8)	Other Input = 0V DE/RE and DE4 = 2V	V _I = +12V			1.0	mA
		$V_{CC} = 3.0V$ $T_{A} = +25^{\circ}C$	V ₁ = -7V			-0.8	mA
I _{IH}	Enable Input	V _{IN} = 2.4V	V _{CC} = 3.0V		1	40	μΑ
	Current High	DE/RE	$V_{CC} = 4.75V$		1		μΑ
			$V_{CC} = 5.25V$		1	40	μΑ
		$V_{IN} = 2.4V$	$V_{CC} = 3.0V$		1	20	μΑ
		DE4 or RE4	$V_{CC} = 5.25V$		1	20	μΑ
I_{IL}	Enable Input	$V_{IN} = 0.8V$	$V_{CC} = 3.0V$		-6	-40	μΑ
	Current Low	DE/RE	$V_{CC} = 4.75V$		-12		μΑ
			$V_{CC} = 5.25V$		-14	-40	μΑ
		$V_{IN} = 0.8V$	$V_{CC} = 3.0V$		-3	-20	μΑ
		DE4 or RE4	V _{CC} = 5.25V		-7	-20	μΑ
I _{CCD}	Supply Current (Note 10)	No Load, DE/RE and DI			75	90	mA
I _{CCR}	Supply Current (Note 10)	No Load, DE/RE and RI	$\overline{\pm}4 = 0.8V$		50	70	mA

Switching Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
DRIVER SINGLE-ENDED CHARACTERISTICS									
t _{PZH}	Output Enable Time to High Level	$R_L = 110\Omega$	(Figure 5)		35	40	ns		
t _{PZL}	Output Enable Time to Low Level		(Figure 6)		25	40	ns		
t _{PHZ}	Output Disable Time to High Level		(Figure 5)		15	25	ns		
t _{PLZ}	Output Disable Time to Low Level		(Figure 6)		35	40	ns		
DRIVER DI	FFERENTIAL CHARACTERISTICS								
t _r , t _f	Rise and Fall Time	$R_L = 54\Omega$	$R_L = 54\Omega$		13	16	ns		
t _{PLHD}	Differential Propagation	$C_L = 50 pF$		9	15	19	ns		
t _{PHLD}	Delays (Note 15)	$C_D = 15 pF$		9	12	19	ns		
t _{SKD}	It _{PLHD} - t _{PHLD} I Diff. Skew	(Figures 3, 4, 9)			3	6	ns		
RECEIVER	CHARACTERISTICS								
t _{PLHD}	Differential Propagation Delays	$C_L = 15 pF$		9	14	19	ns		
t _{PHLD}		$V_{CM} = 2.0V$		9	13	19	ns		
t _{SKD}	It _{PLHD} - t _{PHLD} I Diff. Receiver Skew	(Figure 7)			1	3	ns		
t _{PZH}	Output Enable Time to High Level	C _L = 15 pF			15	22	ns		
t _{PZL}	Output Enable Time to Low Level	(Figure 8)			20	30	ns		
t _{PHZ}	Output Disable Time from High Level				20	30	ns		
t _{PLZ}	Output Disable Time from Low Level				17	25	ns		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Δ IVODI and Δ IVOCI are changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input changes state.

Note 5: In EIA Standards EIA-422 and EIA-485, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}

Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.

Note 7: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$.

Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.

Note 9: Short one output at a time.

Note 10: Total package supply current.

Note 11: All typicals are given for $V_{CC} = 5.0 V$ and $T_A = +25 ^{\circ} C$.

Parameter Measurement Information

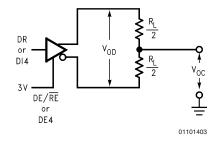


FIGURE 1. Driver V_{OD} and V_{OC} (Note 13)

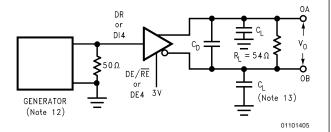


FIGURE 3. Driver Differential **Propagation Delay Load Circuit**

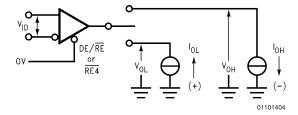


FIGURE 2. Receiver VOH and VOL

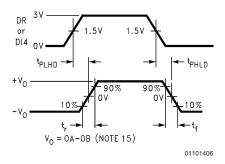
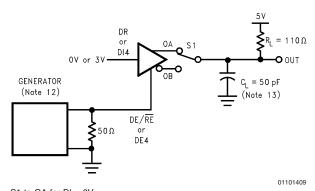
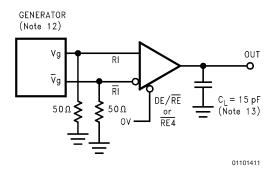



FIGURE 4. Driver Differential Propagation **Delays and Transition Times**


Parameter Measurement Information (Continued)



S1 to OB for DI = 3V


FIGURE 5. Driver Enable and Disable Timing (t_{PZH} , t_{PHZ})

S1 to OA for DI = 0VS1 to OB for DI = 3V

FIGURE 6. Driver Enable and Disable Timing (t_{PZL} , t_{PLZ})

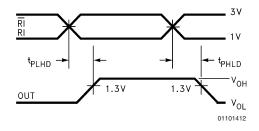
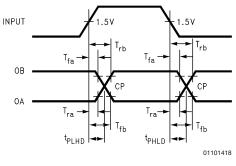



FIGURE 7. Receiver Differential Propagation Delay Timing

Parameter Measurement Information (Continued) - 3V DE/RE. **-0**0UT 1.5 1.57 $2 k\Omega$ • GND S2 GENERATOR – t_{PHZ} (Note 12) **∮**5 kΩ (Note 16) (Note 14) V_{OH} 0.57 (Note 13) DE/RE **\$**50Ω or RE4 1.3٧ 01101416 /_{S3}S1 1.5V S2 Closed C3 Closed 01101413 3٧ DE/RE or RE4 - 3V DE/RE or RE4 1.5٧ GND t_{PZH} → 1.37 OUT 0.5V V_{OL} OUT 1.57 V_{OL} - GND 01101417 S1 -1.5V 01101414 S1 1.5V S2 Closed S2 Open C3 Closed S3 Closed ٠3V $\mathrm{DE}/\overline{\mathrm{RE}}$ 1.5٧ or RE4 - GND t_{PZL} → 4.5٧ 1.5٧ OUT V_{OL} 01101415 S1 -1.5V S2 Closed C3 Open

FIGURE 8. Receiver Enable and Disable Timing

Parameter Measurement Information (Continued)

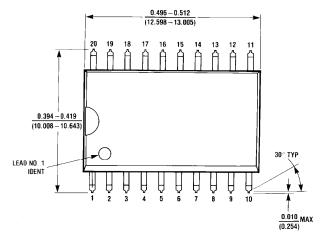
$$T_{CP} = \frac{(T_{fb} \times T_{rb}) - (T_{ra} \times T_{fa})}{T_{rb} - T_{ra} - T_{fa} + T_{fb}}$$

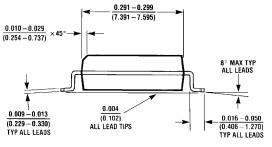
 $T_{ra},\,T_{rb},\,T_{fa}$ and T_{fb} are propagation delay measurements to the 20% and 80% levels.

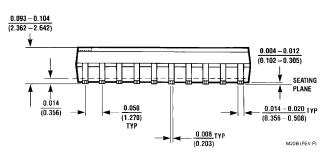
 T_{CP} = Crossing Point

FIGURE 9. Propagation Delay Timing for Calculations of Driver Differential Propagation Delays

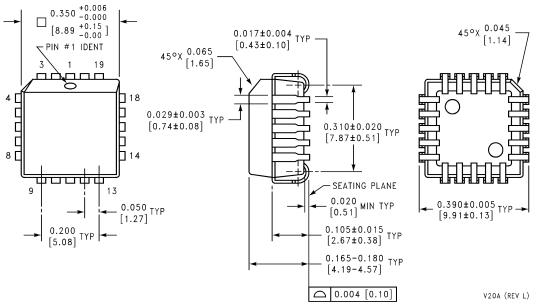
Note 12: The input pulse is supplied by a generator having the following characteristics: f = 1.0 MHz, 50% duty cycle, t_r and $t_f < 6.0 \text{ ns}$, $Z_Q = 50\Omega$.


Note 13: C_L includes probe and stray capacitance.


Note 14: Diodes are 1N916 or equivalent.


Note 15: Differential propagation delays are calculated from single-ended propagation delays measured from driver input to the 20% and 80% levels on the driver outputs (Figure 9).

Note 16: On transceivers 1–3 the driver is loaded with receiver input conditions when DE/RE is high. Do not exceed the package power dissipation limit when testing.


Physical Dimensions inches (millimeters) unless otherwise noted

Order Number DS36954M **NS Package Number M20B**

Order Number DS36954V **NS Package Number V20A**

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.